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Application of Haar wavelet-packets to the solution 
of linear and nonlinear Integral equations 

 
Ruchi Agarwal, Khursheed Alam, C. S. Salimath 

 
Abstract: The paper describes an innovative alternative to Walsh series and single term methods for the solution of linear and nonlinear integral 
equations using Haar wavelet packets. The underlying theory and properties of Haar wavelet packets are presented in some detail. The integral 
operators are expressed in wavelet packet bases resulting invariably into sparse matrices. The proposed methods, as a consequence, reduce the 
computation time and effort, concurrently achieving better accuracy in solving different kinds of integral equations. The error estimates are derived to 
establish the rapidity of convergence. A good agreement between computed results and the exact solutions is demonstrated using numerical tables and 
a computer generated graph. The methods are in general, conceptually simple, easy to implement, yield accurate results and more importantly, they 
have universal features for their applications to a wide range of problems, with higher order convergence rate. 
Keywords: Block-pulse solution, Haar wavelet packets, Multi-Resolution Analysis, operation matrix, Series and single term methods, Walsh functions, 
Wavelet decomposition. 

 
Introduction 
Integral equations are well-known mathematical tools in 
the formulation of physical and mechanical problems. 
They arise in many branches of science, for example, in 
potential theory, acoustics, elasticity, fluid mechanics, 
theory of population etc.  Any integral equation to be 
numerically solved can be reduced to a finite dimensional 
problem or discretized. There are two approaches to the 
discretization of linear integral equations. In one, often 
called the Galerkin (projection) method, expansions of 
functions and kernels involved are truncated in some basis 
and the resulting system of algebraic equations is solved 
numerically. In the second, developed by Nystrom, the 
integral operator is approximated yielding again a system 
of equations to be solved numerically [1]. Projection 
methods have been around for a long time. They have been 
modified in several ways. A more important modification 
is the Sloan iteration. Projection methods have also been 
used to solve nonlinear integral equations. Nonlinear 
integral equations have also been solved with 
generalization of the Nystrom method. But, these methods 
of historical interest impose severe restrictions on the 
underlying functions and integral operators and differ 
drastically in their requirements [2]. Projection methods for 
example, require mean convergence of the relevant 
expansions and hence impose conditions of the classical 

2L -theory, whereas Nystrom method works on the 
assumption that the functions and kernels are continuous 
(Beylkin (1992)). This ultimately limits their applicability to 
a large class of problems. Moreover, these methods 
converge too slowly due to their low approximation order, 
to be of much use in solving integral equations. This 
motivates search for suitable alternative is to solve integral 
equations. 
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There has been considerable revival of interest in solving 
differential and integral equations using techniques which 
involve Walsh functions for quite some time (Hsiao and 
Chen (1979)). More recently, in the field of numerical 
analysis, Walsh series methods such as, truncated series 
and single term have been successfully used  for the 
numerical solution of several classes of problems, 
particularly linear and nonlinear integral equations (Sloss 
and Blyth(2003), Sepehrian and Razzaghi (2005)). 
The use of wavelet methods in numerical analysis has 
opened up floodgates to several areas of research in recent 
years.  In general, wavelet methods havebeen successfully 
used in the numerical treatment of differential and integral 
equations for three main tasks: One, preconditioning large 
systems arising from descretization of elliptic pde’s [17], 
two, adaptive approximations of functions (operators) and 
finally sparse representation of initially dense matrices 
arising from the descretization of integral equations. The 
sparse representation of initially dense matrices arising in 
the discretization of integral equations via wavelet bases, 
leads to new methods for solution of integral equations. 
More precisely, integral operators when expressed in 
wavelet basis result in sparse matrices containing only 
O(nlogn) non-negligible elements(Alpert (1993)).Various 
wavelet bases have been employed in the numerical 
treatment of integral equations. The ultimate aim is to see 
that the convergence is as rapid as possible. In addition to 
the conventional Daubechies wavelets, trigonometric 
wavelets, linear B-splines have been used [18], [19], 
[20].These solutions are often complicated due to inherent 
difficulties involved in differentiation and integration of 
the underlying basis functions. Obviously, attempts to 
simplify procedures based on the wavelet approach are 
needed. In the present paper, rather than employing 
wavelet basis for ( )R2L we use Haar wavelet packets that 
transform the dense matrices resulting from the 
discretization of 2nd kind integral equations into sparse 
matrices, a fact which enables the corresponding integral 
equations to be solved rapidly thereby, providing 
substantial improvement over classical and current 
methods.  The main focus of the paper is to show how the 
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use of Haar wavelet-packet series (HWPS) leads to 
sparsification of smooth integral operators on a finite 
interval, eventually leading to high order convergence. The 
paper is organized as follows. In section 2, a mathematical 
construction of new bases i.e. wavelet-packet bases is 
explained. In section 3, the basic properties of Haar 
wavelet packet series are discussed in some detail; 
followed by abrief explanation of how Haar wavelet-
packet basis can be used to solve both Fredholm and 
Volterra linear integral equations. Section 4, describes the 
method of solution of nonlinear Volterra Hammerstein 
integral equation using single term Haar wavelet-packet 
series (STHWPS). Section 5, is devoted to convergence and 
error analysis. Numerical examples purely for illustrative 
purposes are discussed in Sec. 6.  
 
2. Wavelet packets and wavelet packet 
Transform 
A simple but powerful generalization of wavelets and the 
associated multiresolution analysis is wavelet packets. By 
generalizing the methods of multiresolution analysis, it is 
possible to construct orthonormal wavelet packets which 
provide a family of orthonormal basis of 2 ( ),L R which are 
related in some way to the classical Walsh functions. The 
set of Walsh functions is, in fact, the prototype of wavelet-
packet basis of 2 ( ),L R  just as the Haar wavelet system is 

the prototype of wavelet basis on 2 ( ).L R Wavelet packets 
being particular linear combinations of wavelets; they 
retain many of the properties such as orthonormality, 
smoothness and localization of their parent wavelets. An 
interesting observation is that, wavelet packets generated 
from Haar wavelets coincide with Walsh functions.  To fix 
ideas and notations, we know that, given the bases 
functions ( ){ }tk,1φ  of V1 from multiresolution analysis 
(MRA), ( ){ } ( ){ }ktkt −− ψφ  form orthonormal bases for V0 
and W0 respectively and 001 WVV ⊕= , here           

 )2(2)( ktht
k

k −= ∑ φφ  and ∑ −=
k

k ktg )2(2(t) ψψ  

This splitting trick can be used to decompose W spaces as 
well. For example, if we analogously define: 
                       )2(2)(2 ∑ −=

k
k kthtw ψ   

and ∑ −=
k

k ktgtw )2(2)(3 ψ then{ } { } )( ,)( 32 ktwktw −−  

form orthonormal bases for the two subspaces whose 
direct sum is 1W .  
In general, for n = 0,1, . . , we define a sequence of functions 
as follows: 

 )2(2)(2 ∑ −=
k

nkn ktwhtw  

and

∑ −=+
k

nk ktwgtw )2(2)( 12n  

Clearly setting n = 0, we get )()(0 ttw φ= , the father wavelet 
and n = 1 yields ),()(1 ttw ψ=  the mother wavelet. Various 
combinations of these and their translations and dilations 
can give rise to variety of bases for the function spaces. So, 
we have a whole collection of orthonormal bases generated 
from { }.)(twn  We call this collection “library of wavelet 

packets”, and functions of the form { }ktww j
n −= 22 njk  

are called wavelet packets. 
As a particular case, we look at the wavelet packets 
generated from the Haar 

filters. Since the Haar filter has 
2

1
10 == hh  and using 

 k
k

k hg −−= 1)1( , 
2

1g 10 =−= g ,   we have  

 )12()2(2 −+= twtww nnn and
  )12()2( 12n −−=+ twtww nn with ]1,0[0 )( χ=tw  the Haar 

scaling function and ]1,5.0[]5.0,0[1 )( χχ −=tw ,  the Haar 
wavelet. It indeed, turns out that { }njkw  are the well-

known Walsh functions. Walsh proved that { }njkw  forms a 

complete orthonormal set (Fine, (1946).  The full collection 
of Haar wavelet packets consists of translated and dilated 
Walsh functions and can be represented by 

( )ktww j
nnjk −= 22 2

1
 where nw is the nth Walsh function.  

         The wavelet packets transform generalizes the 
discrete wavelet transform and provides a more flexible 
tool for the time-scale analysis of functions. The wavelet 
transform is actually a subset of a far more versatile 
transformation, the wavelet packet transform. One step in 
the wavelet transform is that it calculates a low pass 
(scaling function) result and a high pass (wavelet function) 
result. The wavelet transform applies the wavelet 
transform step only to the low pass result. The wavelet 
packet transform applies the transform step to both the low 
pass and the high pass results. The wavelet packet method is 
a generalization of wavelet decomposition that offers a 
richer range of possibilities for signal analysis and 
synthesis.. In wavelet analysis, a signal is split into an 
approximation and a detail. The approximation is then 
itself split into a second-level approximation and detail, 
and the process is repeated. For n-level decomposition, 
there are n+1 possible ways to decompose or encode the 
signal. We can visualize this from Fig.1. 
 

 
Fig .1: Wavelet decomposition 
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In wavelet packet analysis, the details as well as the 
approximations can be split. This yields more than 

122
−n

different ways to encode the signal. This can be 
visualized from Fig 2. This is an example of a 
representation that is not possible with ordinary wavelet 
analysis (Andre Quinquis (1998)). 
 

 
Fig. 2: Wavelet packet decomposition 

 
3. Properties of Haar wavelet packet series 
(HWPS)  
A function ])1,0([2Lf ∈ , may be approximated using 
wavelet packets as 

)()( twctf i
i

i∑=                              (3.1) 

From the orthogonality property of wavelet 

packets, we have ( ) ( )∫=
1

0
dttiwtfic  here )(twi  is ith 

wavelet packet and ic  is the corresponding 
coefficient. In practice, only the first m terms are 
considered, where m is the integral power of 2. 
Then from (3.1), we get  

)()()(
1

0

ttwctf m
T

mi

m

i wc==∑
−

,  

here 
,)c , . . . ,c ,( 1-m10

T
m c=c                          (3.2)              

.))(w ., . . ),(w ),(()( 1-m10
T

m tttwt =w      (3.3)            
The integration of a vector )(tmw defined above can be 
approximated by  

),()(
0

tEd m

t

m ww =∫ ττ                                           (3.4)         

where mmE ×  is the operational matrix for 

integration (Chen and Hsiao (1975))  with 
2
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The Haar wavelet-packet transform matrix is defined as  
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This is the matrix which corresponds to the Fast Haar 
wavelet-packet transform. 
After developing the above computational tools, we shall 
proceed to explain the technique of solving linear integral 
equations.  A linear Fredholm integral equation of second 
kind is of the form 

∫+=
b

a

dttftxKxgxf )(),()()(                                     (3.5) 

here K and g are given functions. 
The kernel 22 ],[Lin  is baK  and ],[L  and 2 bagf We use the 
symbol К to denote the integral operator of (3.5), which is 
given by the formula 

                (Кf)(x) = ∫
b

a

dttftxK ,)(),(
 

],[L 2 baf ∈∀ , ],[ bax∈                                  (3.6) 

Now we pass on to the solutions based on the Haar 
wavelet-packets. Since the Haar wavelet-packets are 
defined only for the interval [0,1], we must normalize 
equations (3.5) and (3.6). This can be done by the change of 
variable ( ) ( )abatt −−=∗  
To solve (3.5), using HWPS approach; we represent f and g 
by their HWP series truncated to m terms:

 
 )()(

1

0
∑
−

=

=
m

i
ii xwfxf  and ∑

−

=

=
1

0
i )(g)g(   

m

i
i xwx  

There are several methods by which we can approximate a 
kernel. In the proposed method, we expand the kernel 
K(x,t) by a double HWP series (Shih and Han (1978)). 

 )()(),(
0 0

twxwktxK jiij∑∑
∞ ∞

≈               (3.7)  

This series is convergent in the L2 mean and the coefficients 
are given by  

      
.)()(),(

1

0

1

0

dxdttwxwtxKk jiij ∫ ∫=  
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An obvious choice of approximating kernel is the truncated 
expression 

     
 )()(),(

1

0

1

0

twxwktxK ji

m n

ij∑∑
− −

≈  

Because the series (3.7) is convergent, the coefficients kij are 
guaranteed to converge to zero as m, n increase. 
Now it is convenient to pass to a matrix-vector formulation of 
(3.1). Let mnK  be the matrix of the average values of K(x,t) on 
all sub-squares of [0,1]× [0,1], a straightforward sampling of 
K(x,t). This is a full matrix heavy to store, to multiply or to 
invert. 
Next, our approach differs from the earlier work in that; it 
uses 2D-Haar wavelet packet transform (HWPT) and 
operational matrix of integration to approximate the integral 
operator: 
We first approximate K(x,t)using  
  ( ) T

mmnm HKHtxK ≈,                                       (3.8)    
This is the double wavelet packet series 
approximation of the kernel. Secondly, 
(Кf)(x)  mmimmnm

T
mm EfHKHE ××≈                  (3.9) 

This is how a Haar wavelet-packet transform can be used 
to “sparsify” or “compress” operators in integral 
equations.  
It is easy to see that, the original integral equation (3.5) can 
be approximated by a system of algebraic equations 
(Murlan Corrington (1973)), 

.)( gfKI =−                                    (3.10)  
Thus a Fredholm integral equation of 2nd kind is reduced to 
a finite matrix equation. 
It may be noted that, a Volterra integral equation with 
convolutional kernel can be rewritten in Fredholm form. 
4. Single-term Haar Wavelet packet series 
(STHWPS)  
In this section we extend single term approach developed 
by Sepehrian and Razzaghi (2005), to Haar wavelet-packets 
for the numerical solution of nonlinear Volterra-
Hammerstein integral equation of the form 

[0,1),    ,))(,(),()()(
0

∈+= ∫ xdssfshstkxgxf
t

               (4.1) 

 Let      [0,1).    )),(,()( ∈= ssfshsz                                (4.2) 
In order to solve (4.1) using STHWPS, we first divide the 
interval [0,1) into m equal subintervals, where N.∈m  We 
then stretch each interval 

  ,1,2,..., ,//1 mimitmi =≤≤− to [0, 1) by using transforma
tions.  )1( −−= imtiτ  and )1( i −−= imsλ  
we then have  

   ∫+=
1

0
111111 ;)(),(1)()(

τ

λλλτττ dzk
m

gf                  (4.3) 

and  

∫∑∫
−

=

++=
i

iiii

i

j
iiiiii dzk

m
dzk

m
gf

τ

λλλτλλλτττ
0

1

1

1

0

)(),(1)(),(1)()(

                                                                                (4.4) 
Let   )( ig τ  and ),k( ii λτ be expressed by STHWPS 

as m., . . 1,2,.i   ),()( 0
)( == i

i
i wFg ττ                        (4.5) 

 i,., . . 1,j m,., . . 1,2,i   ),()(),( 00
),( === ii

ji
ii wwKk λτλτ      

                                                                              (4.6) 

Here, ( ) ( )  d
/

/1
0

)(
i

mi

mi
ii

i wgF τττ∫
−

= and 

 ),(
/

/1

/

/1

2),( ∫ ∫
− −

=
mi

mi

mj

mj

ji dtdsstkmK                            (4.7)                                              

Similarly,  z(s) and )(sf are expanded by STHWPS as 

)()( 0
)(

i
i

i wYf λλ = ,                                           (4.8) 

where ( ) ( )  d
/

/1
0

)(
i

mi

mi
ii

i wfY τττ∫
−

=  

))(,()( 0
)(

i
i

ii wYhz λλλ =                              (4.9) 
Let )( iz λ  be expressed by STHWPS as  

)()( 0
)(

i
i

i wZz λλ = ,                             (4.10) 

Where ( ) ( )  d
/

/1
0

)(
i

mi

mi
ii

i wzZ λλλ∫
−

=  

Using E = ½  (Hsiao and Chen (1979)), and (4.6) 
and (4.10), we get 

),(
2
1)(),( 0

)(),(

0
i

iii
iiii wZKdzk

i

τλλλτ
τ

=∫ i=1,. . .,m.   (4.11) 

Using (4.3) and (4.11), the Block-pulse value )1(Y   in the 
first interval is given by 

,
2
1 )1()1,1()1()1( ZK
m

FY +=
                      

(4.12) 

And similarly, 

,
2
11 )(),(

1

1

)(),()()( iii
i

j

jjiiI ZK
m

ZK
m

FY ++= ∑
−

=

(4.13) 

which is a system of nonlinear equations for )(iY , 
Then by using   

)1(2)( )( −−= ifYif i
, ,2,,1 =i  (4.14) 

gives Block-pulse and discrete values of solution function 
f(x). 
5. Numerical Examples 
We choose integral equations that can be solved 
analytically, so that accuracy and efficiency of the method 
can be checked easily. We consider Fredholm, Volterra 
transformed into Fredholm form, Fredholm-Hammerstein 
and Volterra-Hammerstein type of integral equations. 
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5.1 Consider, ,

 
( ) ( ) [0,1]x,,

1
1)(

1

0

1
∈+

+
−

−= ∫
+

dssfsxk
x

eexf
x

x  

a Fredholm type linear integral equation, with a symmetric 
kernel,  esxk xs=),( ,

sf e(s) = .  

The exact solution is ( ) .ex xf =  
This is solved by the method explained in section 4.3, for  
m = 8 and 16.  
 Now, 8 8K × the matrix of the average values of K(x,s) on all 
sub-squares of [0,1]× [0,1]  is 
1.00391 1.01179 1.01972 1.02772 1.03578 1.04391 1.05209  1.06034
1.01179 1.03578 1.06034 1.08549 1.11123 1.13758 1.16456  1.19218
1.01972 1.06034 1.10258 1.14651 1.19218 1.23967 1.28905  1.34041
1.02772 1.08549 1.14651 1.21095 1.27902 1.35091 1.42685   1.50705
1.03578 1.00023 1.19218 1.27902 1.37219 1.47214 1.57938   1.69443
1.04391 1.03758 1.23967 1.35091 1.47214 1.60425  1.74821  1.90509
1.05209 1.16456 1.28905 1.42685 1.57938 1.74821  1.35509  2.14195
1.06034 1.19218 1.34041 1.50705 1.69443 1.90509 2.14195   2.40826

 
 
 
 
 
 
 
 
 
 
 
  

 

From equation (3.8), 888888 ×××≈ HKH exs this in expanded 
form is  

0.0129 0.0137 0.0147 0.0157 0.0168 0.0180 0.0184 0.0208
0.0002 0.0006 0.0011 0.0017 0.0023 0.0031 0.0030 0.0048
0 0.0001 0.00004 0.00009 0.0002 0.0003 0.0005 0.0006
0.0001  0.0003   0.00057 0.00085    0.00117 0.0015 0.

− − − −
− − − − −

− − − 0010 0.0024
0 0 0.00001 0.00002 0.00004 0.0008 0.0010  0.0001
0 0 0 0 0 0.00001 0.0009   0.0003
0 0 0.00002  0.00005  0.00008 0.00013  0.0011   0.0003
0.00005 0.0001 0.000287    0.00043 0.00058 0.00078     0.0019  0.0012



− − −
− −

− −
− − −


 
 
 
 
 
 
 
 
 
 
  
 
From equation (3.9), 

( ) ( ) ≈∫
b

a

dttftxK ,

0.006311 0.000067 0.000181 0.000113 0.0003999 0.00041 0.000440     -0.000462
0.003202 0.000039 0.000122 0.000130   0.0002023 0.000212 0.000221 0.000232
0.001591 0.000017 0.000053 0.000054  0.000102  0.00010  0.0001

− − − − − −
−
− 12 0.000121

0.000028  0 0.000033 0.000043 0 0    0  -0.000151
0.000798  0 0.000291 0.000026  0.000050 0.000053 0.000057 0.000061
0.000016  0 0.000131 0.000023 0  0  0 0
0  0 0 0 0  0  0 0
0  0 0 0.000011 0  0  0 0

 
 
 
 
 − − − 
 −


− −



− 

. f






 
We would like to draw attention to the above matrix. It is 
observed that, most of the entries are zero (or near to 
zero).Here the matrix contains only O(nlogn) non-negligible 
elements proving the sparsity of   the integral operator 
К(Alpert (1993)).This is one of the reasons for rapid 
convergence of the proposed method. 
 
Also,

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 88

1

1615,1613,1611,169
,167,165,163,161

1
1)( ×

+
⋅









≈
+
−

−= H
gggg

gggg
x

eexg
x

x  

={-0.648092,-0.056142, 0.018611,-0.0296445, 0.004797,-
0.0015815, 0.0093635,-0.015025}. 
The solution obtained by solving, Equation (3.10) is in wavelet-
packet domain. By inverse transformation, the solution of the 

original equation is obtained. Similar expressions can be 
obtained when m = 16. 
Results obtained for m=8 and 16 are given in Table 
No. 1 and 2 respectively. 
 
Table. 1. Comparison of HWPS solution with exact 
solution of Ex. 5.1, for m = 8 

 
 

    Table. 2. Comparison of HWPS solution with exact 
solution of Ex.5.1, for m=16. 

 

 

5.2 Consider ( ) ( )∫ −+=
x

dttftxxxf
0

sin)( a Volterra 

equation with convolutional but nonsymmetrical 
kernel.  

The exact solution is 3
6
1)( xxxy +=  

This can be rewritten in Fredholm form (Blyth 

(2003)) as ( ) ( ) ( )∫+=
1

0

,)( dttftxKxgxf

 
xxg =)(here, ( )

( )




≤
≤−

=
1             ,0

0,sin
,   and





tx
xttx

txK  

 
This is solved by the method explained in section 3. 
Results obtained for m=8 and 16 are given in Table 
No. 3. The agreement between the exact solution 
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and the computed solution is impressive, even for 
taking small values for m. Numerical findings 
suggest that, the accuracy will improve 
dramatically by taking m large enough.  
 
Table. 3. Comparison of HWPS solution with exact 
solution of Ex-5.2, for m = 8 and =16. 

  
5.3 Consider  

( )

( ),1sin1cos
2

                                             

2cos2sin
2

1))(,(),()(
11

0

−−

−−=−
−

∫
x

x

e

edssfsgsxkxf

 

[ ]1,0∈x , a Fredholm-Hammerstein nonlinear integral 
equation with convolutional kernel,  
( ) ,, sxesxk −= ( )( ) ( )( )sfxsfsg += cos, here the exact solution 

is f(x) = 1.  
This is solved by the method explained in section 4. 
Results obtained with m=10 and 20 are given in 
Table No. 4.  
Table. 4. Comparison of error estimates for m=10 
and 20 of Ex-5.3. 
 

 
 
5.4Next consider  

 ),1,0[,)()sin(3)(sin1)(
0

22 ∈−−+= ∫ tdssfstttf
t

 
A Volterra-Hammerstein integral equation which is ‘more’ 
nonlinear than Example 5.3. This has the exact 
solution ttf cos)( = This equation is solved using the 
procedure explained in section 4.  

The results obtained are plotted graphically. The graph 
shows that plots of STHWPS solution and exact solution 
are almost indistinguishable, even for small values of m. 
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Fig. 3 Comparison of HWPS solution of example 5.4 with 
exact solution for m = 40 and m = 60. 
 
6. Convergence and Error analysis 
An important characteristic of any numerical method is not 
only its ability to guarantee convergence but equally 
important is the rate at which convergence is achieved. 
Approximation with Haar wavelet-packets is equivalent to 
the approximation with piecewise constant functions. If f, g 
and K in (3.5) are sufficiently smooth, then the convergence 
rate for piecewise constant functions is  
O(m2). This property can be transferred to HWPS approach 
[20]. The efficiency of the method is demonstrated by some 
numerical examples; for getting error estimates, for which 
the exact solution yex(x) is known are considered. The 
accuracy of the results is estimated by the error 
function ( ) ( )( )iexi

mi
J xyxy −=

≤≤1
maxε  

So it is evidenced numerically that in the case of our 
solution, by halving the step size (doubling the resolution 
from m=8, to m=16) the error function roughly decreases 
quadratically. This theoretical estimation in general holds 
for the numerical finding in Tables 1-4. Results from Tables 
1 and 2, show that the method yields rapid convergence 
with convergence rate 2≈ . Thus second order convergence 
is observed, as predicted by the theoretical considerations. 
The results of Table 4 show that STHWPS approach 
applied to example 3 is behaving as an order two scheme 
as expected from error analysis. All calculations are done 
using mathematica programs. 
Conclusions 
In this paper, the application of Haar wavelet-packet basis 
has been used for the solution of variety of second-kind 
integral equations in which integral operators are 
represented as sparse matrices which involves solution of 
the corresponding integral equations to be solved rapidly 
and accurately. These bases are very effective for the fast 
solution of wide class of such problems. The basic idea 
behind series and single-term approaches is to reduce the 
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problem to solving a system of linear or nonlinear 
algebraic equations. HWPS approach does not involve any 
integration since operational matrix of integration 
transforms integration into matrix-vector multiplication. 
By contrast, STHWPS approach does not require 
operational matrices of integration avoiding the possibility 
of computing and storing matrices of enormously large 
sizes. Furthermore, there is no restriction on m as in the 
case of series approach. Another major advantage of these 
new approaches is that besides meeting accuracy 
requirements, they lead to higher order convergence.  
These approaches have the additional advantage of O(N) 
complexity, in the sense that the number of required 
operations is of the same order as the number of computed 
values. Our experience dictates that, many other classes of 
integral equations can be solved efficiently using these 
techniques. 
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